MANFAAT GELOMBANG BUNYI DAN SINAR
Radiasi inframerah memegang peranan penting pada efek pemanasan Matahari. Matahari tidak hanya memancarkan cahaya tampak, tetapi juga inframerah (IR) dan ultraviolet (UV) dalam jumlah yang tetap. Manusia menerima gelombang elektromagnetik dengan cara yang berbeda-beda tergantung pada panjang gelombangnya.
1. Gelombang Radio
Gelombang radio terdiri atas osilasi (getaran) cepat pada medan elektrik dan magnetik. Berdasarkan lebar frekuensinya, gelombang radio dibedakan menjadi Low Frequency (LF), Medium Frequency (MF), High Frequency (HF), Very High Frequency (VHF), Ultra High Frequency (UHF), dan Super High Frequency (SHF).
Gelombang radio MF dan HF dapat mencapai tempat yang jauh di permukaan bumi karena gelombang ini dapat dipantulkan oleh lapisan ionosfer. Gelombang LF diserap oleh ionosfer, sedang gelombang VHF dan UHF menembus ionosfer, sehingga dapat digunakan untuk komunikasi dengan satelit.
2. Gelombang Mikro
Gelombang mikro merupakan gelombang elektromagnetik dengan panjang gelombang dalam selang antara 0,001 dan 0,03 m. lombang mikro dihasilkan oleh peralatan elektronik khusus, misalnya dalam tabung Klystron. Gelombang ini dimanfaatkan dalam alat microwave, sistem komunikasi radar, dan analisis struktur molekul dan atomik.
3. Sinar Inframerah
Radiasi inframerah merupakan radiasi elektromagnetik dengan panjang gelombang lebih panjang daripada panjang gelombang cahaya merah, namun lebih pendek daripada panjang gelombang radio. Dengan kata lain radiasi pada selang panjang gelombang 0,7 μm hingga 1 mm. Sinar inframerah dapat dimanfaatkan dalam fotografi inframerah untuk keperluan pemetaan sumber alam dan diagnosis penyakit.
4. Cahaya Tampak
Cahaya tampak merupakan radiasi gelombang elektromagnetik yang dapat dideteksi oleh mata manusia. Cahaya tampak memiliki kisaran panjang gelombang antara .
5. Sinar Ultraviolet ()
Gelombang ultraviolet mempunyai panjang gelombang yang pendek. Matahari merupakan pemancar radiasi ultraviolet yang kuat, dan membawa lebih banyak energi daripada gelombang cahaya yang lain. Karena inilah gelombang ultraviolet itu dapat masuk dan membakar kulit. Kulit manusia sensitif terhadap sinar ultraviolet matahari. Meskipun begitu, atmosfer bumi dapat menghambat sebagian sinar ultraviolet yang merugikan itu. Terbakar sinar matahari juga merupakan risiko yang dapat menimbulkan kanker kulit.
6. Sinar X ()
Sinar-X merupakan radiasi elekromagnetik yang dihasilkan dari penembakan atom-atom dengan partikel-partikel yang memiliki energi kuantum tinggi. Panjang gelombang sinar-X berkisar antara . Sinar-X dihasilkan oleh elektron-elektron yang berada di bagian dalam kulit elektron atom, atau pancaran yang terjadi karena elektron dengan kelajuan besar menumbuk logam. Sinar-X dapat melintas melalui banyak materi sehingga digunakan dalam bidang medis dan industri untuk menelaah struktur bagian dalam. Sinar-X dapat dideteksi oleh film fotografik, karena itu digunakan untuk menghasilkan gambar benda yang biasanya tidak dapat dilihat, misalnya patah tulang.
7. Sinar Gamma ()
Sinar atau gelombang gamma, yang merupakan bentuk radioaktif yang dikeluarkan oleh inti-inti atom tertentu, mempunyai panjang gelombang yang sangat pendek. Sinar ini membawa energi dalam jumlah besar dan dapat menembus logam dan beton. Sinar ini sangat berbahaya dan dapat membunuh sel hidup, terutama sinar gamma tingkat tinggi yang dilepaskan oleh reaksi nuklir, seperti ledakan bom nuklir.
Manfaat Dan Penerapan Gelombang Cahaya
Dalam Teknologi
Mesin
Fotocopy
Sebuah fotokopi (juga
dikenal sebagai mesin fotokopi atau mesin fotokopi) adalah
mesin yang membuat kertas salinan
dokumen dan gambar visual lainnya dengan cepat dan murah. Fotokopi
Kebanyakan saat ini menggunakan teknologi yang disebut xerografi ,
proses kering menggunakan panas. (Copiers juga dapat menggunakan teknologi
output lainnya seperti tinta jet ,
tetapi xerografi merupakan standar untuk menyalin kantor.)
Cahaya sebagai Gelombang
Elektromagnetik dan Spektrum Elektromagnetik
Berdasarkan
perhitungan yang telah dilakukan Maxwell, kecepatan gelombang elektromagnetik
di ruang hampa adalah sebesar m/s, yang nilainya sama dengan laju cahaya
terukur. Hal ini membuktikan bahwa cahaya merupakan gelombang elektromagnetik.
Pernyataan Maxwell diperkuat oleh Heinrich Hertz (1857 – 1894). Dalam
eksperimennya, Hertz menggunakan perangkat celah bunga api di mana muatan
digerakkan bolak-balik dalam waktu singkat, membangkitkan gelombang berfrekuensi
sekitar Hz. Ia mendeteksi gelombang tersebut dari jarak tertentu
dengan menggunakan loop kawat yang bisa membangkitkan ggl jika terjadi
perubahan medan magnet. Gelombang ini dibuktikan merambat dengan laju m/s,
dan menunjukkan seluruh karakteristik cahaya (pemantulan, pembiasan, dan
interferensi).
Komentar